首页  新疆大学主站  研究所简介  机构设置  研究队伍  通知公告  科研动态  研究成果  研究生教育 
最新消息: · 2018年研究所招聘博士         · 朱教君研究员来我校作“林窗与森林更新”学术报告         · 第九届环境科学与发展国际会议 (ICESD 2018)         · 全球气候研讨会(CGC 2018)         · 土壤修复与植物保护国际会议(SRPP 2018)         · 第23届中国大气环境科学与技术大会——中国环境科学学会大气环境分会2017年学术年会第一轮通知         · 研究所招聘人员待遇   
通知公告
文章内容页
当前位置: 首页>>科研动态>>国内外最新研究进展>>正文

Hydrologic regulation of plant rooting depth
2017-10-27 13:06 Ying Fana, Gonzalo Miguez-Macho, Esteban G. Jobbágy, Robert B. Jackson, and Carlos Otero-Casal  PNAS

 

了解植物生根深度对于了解植物介导的全球变化至关重要。 地球系统模型对这一特定参数非常敏感,对模拟植物生产力,土地和大气之间的水能 - 碳交换以及调节数百万年间碳循环的硅酸盐风化影响很大。 然而,我们对于植物根系能长多深及其原因却知之甚少。 偶然间的发现:根系在井中深度>70m, 而在山洞中根深却只>20m,表明植物根系具有巨大可塑性,但其驱动因素和全球意义尚不清楚。 Fan等研究人员通过对1000多种植物根系观测和建模分析,揭示了土壤水分是植物生根深度总体模式形成的最普遍的驱动力。

 

该论文发表于PNAS,2017年第114卷40期上,doi: 10.1073/pnas.1712381114

 

Hydrologic regulation of plant rooting depth

Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients.Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow,avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change.

                       

关闭窗口

 

干旱生态环境研究所  地址:新疆乌鲁木齐市天山区胜利路666号
电话:0991-8582056  邮编:830046